MATHCOUNTS $)$ (linisi

March 2017 Activity Solutions

Warm-Up!

1. If $f(n)=n^{2}+n+17$, then to find $f(11)$ we simply need to substitute in 11 for each n that appears in the equation. Doing so, we find that $f(11)=11^{2}+11+17=121+11+17=149$.
2. If $S(n)$ is a function that returns the sum of the first n positive integers, then $S(20)$ is the sum of the first 20 integers, $1+2+3+\ldots+19+20$, and $S(19)$ is the sum of the first 19 integers, $1+2+3+\ldots+19$. The difference is $S(20)-S(19)=20$.
3. Knowing the distance is 64 feet, to find the time it will take to fall, we must substitute 64 into the equation for d and solve. We get $64=16 t^{2} \rightarrow 4=t^{2} \rightarrow t=2$ seconds.
4. Similar to the previous problems, we need to substitute r for the variables a and b and 3 for the variable c. Doing so yields $r \times r^{3}=625 \rightarrow r^{4}=625=25 \times 25=5 \times 5 \times 5 \times 5 \rightarrow r=5$.

Follow-up Problems

5. Let's start by substituting the values $x=0$ and $y=8$ into the equation to find the constant, c. We get $8=c \cdot 2^{0}$ or $c=8$. Now we can solve for y when $x=2$. We get $y=8 \cdot 2^{2}=8 \cdot 4=32$.
6. First, we should substitute $g(x)=108$ into the equation to solve for $f(x)$. We get $108=2(f(x))$ or $f(x)=54$. Next, we can solve for the value of $x: 54=x^{2}+5 \rightarrow 49=x^{2} \rightarrow x= \pm 7$. So, the greatest possible value of $f(x+1)=f(7+1)=f(8)=8^{2}+5=64+5=69$.
7. If $f(3 m)=3(f(m))$, then $(3 m)^{2}+12=3\left(m^{2}+12\right) \rightarrow 9 m^{2}+12=3 m^{2}+36 \rightarrow 6 m^{2}=24 \rightarrow$ $m^{2}=4 \rightarrow m=2$.
8. Let's count the squares of the stages shown to see what pattern is emerging. Stage 1 starts with 1 square. From stage 1 to stage 2,4 squares are added. From stage 2 to stage 3,8 squares are added. From stage 3 to stage 4,12 squares are added. The number of squares is increasing following the arithmetic sequence $1+4 \cdot 1+4 \cdot 2+4 \cdot 3+\ldots+4 \cdot(n-1)$, where n is the stage number. At stage 10, there will be $1+4 \cdot 1+4 \cdot 2+\ldots+4 \cdot 9=1+4(1+2+\ldots+9)=$ $1+4(45)=1+180=181$.
